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ABSTRACT, An X-ray d i f f r ac t i on  measurement has been carried out for a 
3.9 mol% aqueous solut ion of TBA ( t e r t i a r y  butylalcohol) with an energy- 
dispersive di f f ractometer.  Constant temperature molecular dynamics cal-  
culat ion has also been made for an aqueous solut ion model simulating the 
above-mentioned mixture. Both results suggest the formation of a f a i r l y  
stable c la th ra te - l i ke  structure of water around TBA molecules. 

I .  INTRODUCTION 

Ter t ia ry  butylalcohol (TBA) can mix with water in al l  proportions 
at room temperature and form a uniform solut ion, even though i t  has a 
f a i r l y  large hydrophobic group, However, the aqueous solut ion of TBA is 
one of the most in terest ing aqueous systems since i t  exh ib i ts  very 
unusual behavior in i t s  physico-chemical properties especial ly in the 
d i lu te  region, A deep and sharp minimum in the par t ia l  molar volume vs, 
composition curve for TBA (Nakanishi, 1960) [ I ]  and a large peak in the 
excess heat capacity vs, composition curve (Desnoyers et a l . ,  1980) [2] 
are well known examples of such anomalies. For other experimental 
results reported ear l ie r ,  we refer to a review by Glew et al.  (1968) 
[3] .  Recently lwasaki and Fujiyama (1979) [4] have observed an anomalous 
concentration f luc tuat ion in the i r  l i gh t  scatter ing experiment. 

On the basis of such experimental evidence, i t  has been suggested 
that there should be the formation of c la th ra te - l i ke  structure of water 
around TBA and some other hydrophobic solutes in d i lu te  solut ion, The 
purpose of the present study is to examine whether or not the structure 
of water in the solut ion is d i f fe ren t  from that of pure water and 
whether the dif ference, i f  any, can be accounted for by the c lathrate-  
l ike structure, The internal  structure of a l i qu id  can be investigated 
both by d i f f r ac t i on  measurements using X-ray or neutron radiat ion and 
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computer simulations using Monte Carlo or molecular dynamics (MD) 
methods, These two techniques have recently been developed to the extent 
that they can give consistent results for essent ia l ly  any types of 
l iqu id  mixtures. Therefore we have combined in th is  study X-ray 
analysis with MD simulation for the elucidat ion of the hydration 
structure in a d i lu te  aqueous solut ion of TBA, 

2, X-RAY DIFFRACTION STUDY 

An X-ray d i f f r ac t i on  experiment has been carried out for a 3,9 mol% 
aqueous solut ion of TBA by means of energy-dispersive di f f ractometry 
(Nishikawa and l i j ima,  1984) [5] at room temperature, For comparison, a 
s imi lar  d i f f rac t i on  measurement has also been Derformed for Dure water. 
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Figure I .  The to ta l  coherent X-ray in tens i t i es  for  pure water and a 3.9 
mol% aqueous solut ion of TBA at room temperature, 
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In Figure I ,  the t o ta l  coherent sca t te r ing  i n t e n s i t i e s  from a 3.9 
mol% aqueous so lu t ion  of TBA (so l i d  curve) and pure water (dotted curve) 
are shown. A monotonical ly decreasing curve ( th in  so l id  curve) is  the 
theore t i ca l  s e l f - s c a t t e r i n g  i n t e n s i t y .  The d i f fe rence in the i n t e n s i t y  
between water and so lu t ion  is c l e a r l y  seen in the large f i r s t  peak and 
the second shoulder peak, but there is no d i f fe rence in the phase (peak 
pos i t i on )  in the two curves. Note tha t ,  in sp i te  of  the very low 
concentrat ion of TBA, the decrease in the i n t e n s i t y  mentioned above is 
d ras t i c .  

By the Fourier t ransformat ion of the sca t te r ing  i n t e n s i t i e s ,  rad ia l  
d i s t r i b u t i o n  funct ions (RDF) are obtained as shovn in Figure 2. A 
shou lder - l i ke  small peak is  detected at r = 1.6 A in the RDF for  the 
so lu t ion ,  which is  ascribed to the int ramolecular  C-C and C-O 
inter ferences of TBA. However, due to the low concentrat ion of TBA, the 
con t r i bu t i on  of the s t ruc tu ra l  co r re la t i on  between water and TBA 
molecules to the RDF is very small and smeared. The rad ia l  d i s t r i b u t i o n  
curve shows only water-water(more exac t ly ,  oxygen-oxygen) co r re la t ion  
even for  the TBA aqueous su lu t ion .  

The f i r s t  large peak at r = 2.9 A in Figure 2 is due to the 
hydrogen bonding oxygen-oxygen in ter ference.  The pos i t i on  of the f i r s t  
peaks fo r  the two systems is  the same, but tha t  of  the second peaks is  
d i f f # r e n t  from each other,  namely, i t  i s  at 4.65 A for  the so lu t ion  and 
4.5 A for  pure water, respec t i ve ly .  This fac t  ind icates tha t  the oxygen- 
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Figure 2. Radial d i s t r i b u t i o n  funct ions for  pure water and a 3.9 mol% 
aqueous so lu t ion  of  TBA. 
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oxygen distance between hydrogen-bonding water molecules are the same, 
but the angles in the network st ructure formed by the hydrogen-bonding 
are d i f f e ren t  between the two systems, 

3. MOLECULAR DYNAMICS STUDY 

A constant temperature MD calculat ion has been carr ied out for  a 
3.2 mol% aqueous solut ion of TBA containing 7 TBA and 209 water mole- 
cules at 298 K and 0.9792 g/cc. The computer program used for  keeping 
the temperature of the solut ion constant is based on the one developed 
by one of us (Tanaka et a l , ,  1983) [6] as a rea l i za t ion  of the proposal 
of Andersen (1980) [7] .  The time step in in tegrat ing the Newton-Euler 
equation of motion for  a l l  the molecules is 0,0004 picoseconds and the 
calculat ion is extended up to 84,000 time steps (approximately 26 
picoseconds). 

Three pair  potent ia l  functions are required to represent water- 
water, water-TBA, and TBA-TBA in teract ions,  The MCY potent ia l  (Matsuoka 
et a l . ,  1976) [8] is adopted for  water-water in teract ions,  while the 
other two have been prepared by quantum mechanical LCAO SCF MO 
calculat ions for  many re la t i ve  conf igurat ions in each dimer with STO-3G 
basis set and multi-parameter f i t t i n g  of the MO values to a 
semi-empirical 12-6-3-I type potent ia l  energy funct ion. Other de ta i l s  
w i l l  be given elsewhere (Tanaka et a l . ,  1984) [9 ] .  

Computer simulations such as that  described above can afford 
abundant information on s t ruc tura l  and dynamic propert ies of f l u id  
systems, Here we focus at tent ion on the t ra jec to ry  diagram of the 
solut ion.  Figure 3 shows I0 picosecond t ra jec to r i es  for  the molecules in 
a layer of 20 A x 20 A x 3,3 A. This is one of six layers which are 
produced by d iv id ing the cubic ce l l ,  Inc identa l l y  th is  layer contains 
two TBA molecules indicated by shading for  i l l u s t r a t i o n ,  

Three important conclusions can be drawn from the f igure.  In the 
f i r s t  place, the or ientaion of water molecules is quite regular in the 
solut ion.  Of the other f ive layers not given here, four layers exh ib i t  a 
s imi lar  pattern of the s t ruc tu r i za t ion  of water, This may be due to a 
cage formation induced by a cooperation of hydrophobic hydration in the 
hydrophobic group of TBA with hydrogen bonding in the hydroxyl group of 
the same molecule. This means that  even such a low concentration of 3.2 
mol% is su f f i c i en t  for  large hydration spheres of TBA to cover almost 
the whole solut ion,  Secondly, in spi te of a f a i r l y  large time duration 
of I0 picoseconds, most of the t ra jec to r ies  of the water molecules seem 
to be unexpectedly t i gh t ,  ind icat ing the presence of so-cal led "iceberg 
formations," This observation can be supplemented by the fact  that  the 
mean square displacement vs. time p lot  shows much di f ference between 
pure water and water in the TBA solut ion,  The values of the se l f -  
d i f fus ion coe f f i c ien t  estimated from th is  p lo t  indicate that  the 
decrease in the d i f fus ion coe f f i c ien t  in the TBA solut ion from that  for  
pure water is as large as 15%. The f ina l  important observation is that  
TBA molecules can sel f -associate even in such a d i l u te  solut ion.  
However, because of the entropy ef fect ,  th i s  associat ion is of the 
solvent-separated type (Franks, 1 9 8 2 ) [ I 0 ] ,  which means the presence of 
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one water layer between two TBA molecules. Moreover, the pair  
in terac t ion d i s t r i bu t i on  funct ion calculated from the MD data c lear ly  
indicates that  there is no strong in terac t ion such as that  by hydrogen 
bonding between two TBA molecules, in other words, TBA molecules tend to 
approach each other with t he i r  hydrophobic groups in contact. This is 
cruc ia l  evidence for  the so-cal led hydrophobic in terac t ion .  

I t  must be pointed out here that  the formation of a stable 
hydration sphere around TBA had also been observed in our previous Monte 
Carlo ca lcu la t ion for  an i n f i n i t e l y  d i l u te  aqueous solut ion of TBA 
(Nakanishi et a l . ,  1984) [ I I ] .  We have given density d i s t r i bu t i on  
diagrams for  water molecules around TBA in Figure 19 of our paper. 
Figure 4 is a b i rd ' s  eye view of the hydration sphere. The or ig ina l  
3-dimensional model of th i s  photo has been prepared by sandwiching 
transparent copies of the diagrams a l te rna te ly  with p las t ic  plates. We 
can c lea r l y  see that  the volume occupied by one hydration sphere is 
ce r ta in l y  much larger than that  of the TBA molecule i t s e l f .  

4. DISCUSSION AND CONCLUSION 

Although the st ructure of pure l iqu id  water is not f u l l y  
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Figure3. Tra jector ies of molecules for I0 picoseconds in one of six 
l ayers  which c o n s t i t u t e  the  cubic basic  ce l l  as obta ined from MD data ,  
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Figure 4. Stereographic view of the hydration structure around TBA at 
i n f i n i t e  d i l u t i on  as obtained by Monte Carlo ca lcu lat ion.  

Figure 5. 
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Hexakaidecahedron model for  c ] a t h r a t e - l i k e  s t r u c t u r e .  
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understood ( l i j ima  and Nishikawa, 1984) [12], i t  is cer ta in that  each 
water molecule in the network reta ins te t rahedra l l y -d i s t r i bu ted  nearest 
neighbors (Narten, 1972 [13];  Ohtomo et a l . ,  1981 [14] ) .  The di f ference 
in the posi t ion of the second peak (see dotted l ine for  pure water and 
sol id  l ine for  TBA aqueous solut ion in Figure 2) may be interpreted 
reasonably i f  one assumes a cage st ructure of water around TBA molecules 
which is d is tor ted  from the normal tetrahedral  angle. One of the 
possible st ructures is a hexakaidecahedron st ructure (see Figure 5) 
around a TBA molecule by taking into account the bulkiness of TBA and 
the experimental fact  (Glew et a l . ,  1968) [3] that  TBA forms a type I I  
c la thra te  hydrate (Davidson, 1973) [15] with a "help gas." The 
hexakaidecahedron is formed by pentagons and hexagons. The distance 
between the second nearest neighbors in a pentagon is almost the same as 
that  in the tetrahedral  conf igurat ion,  but is larger than that  in a 
hexagon. This cont r ibut ion w i l l  s h i f t  the second peak to a larger 
distance in the TBA solut ion.  

The assumed cage st ructure containing 28 water molecules can give 
X-ray d i f f r ac t i on  i n tens i t i es  that  a~elconsistent with the present 
experimental data at least  for  s > 3A- . Howeyer, i t  is d i f f i c u l t  to 
simulate the scat ter ing in tens i t y  for  s < 3A " because of the t runcat ion 
e f fec t .  This number of water molecules, 28, which can be regarded as a 
hydration number, is close to the values using other techniques as 
summarized below. 

Authors Technique Hydration Number 

Goldhammer and Hertz (1970) [16] NMR 25 

Antosiewicz and Shugar (1983) [17] Ultrasonic ve loc i ty  22.4 

Nakanishi et al .  (1984) [ I I ]  Monte Carlo 20 - 25 

This work X-ray d i f f r a c t i o n  28 

Due to the lack of a f u l l  understanding of the st ructure of pure 
water, i t  is d i f f i c u l t  to determine the unique conf igurat ion of water 
molecules in the solut ion of TBA or other nonelectrolytes and to 
understand the s t ructure as a whole. However, a consistent resu l t  has 
been obtained by the combination of two completely d i f f e ren t  approaches. 
Therefore, one can conclude from the present study that  the s t ructure of 
water around a TBA molecule is d i f f e ren t  from that  of pure water and 
that the di f ference can be interpreted as the formation of a polyhedral 
s t ructure.  
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